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ABSTRACT

The present report develops electrical analogs to investigate
multiple cracks on simple beams and more complex frame structures.
Analog networks provide the economic tool to analyze such structures.
The effect of multiple cracks on the natural frequencies of simple struc-
tures is studied in detaii. It is shown that closely spaced multiple
cracks are indistinguishable from an effective single crack. A severe
crack on a structure can be identified if there are only minor cracks in
addition to the major one. If, on the other hand, there is more than one
severe crack, then the damage cannot, in general, be diagnosed with only
three frequencies measurable. Nevertheless, a minimum number of cracks
which are likely to be present in the structure can be established.

Characteristic equations are developed in the form of linear systems
for cantilever beam and general frame structures with multiple cracks.
Usefulness of relative-frequency-change curves are demonstrated and rough
guidelines are provided to aid the damage diagnosis process. Several
numerical examples are included which illustrate the effect of multiple
cracks on frequencies.
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Symbol

ei(= Li/L)

i2

i1’ 2

N5
P, P"

0 Qf

NOMENCLATURE

crack length
half depth of a flexural member
location of the crack on a beam with only one crack

distance between i-1st and ith cracks on a simple beam;
length of the ith beam segment in a frame structure

location of the single crack which is equivalent to a group
of cracks (the definition of equivalence is given on p. 24)

modulus of elasticity

voltage sources in analog T circuit for the ith beam
segment, Equation (10) (no subscript i for a one-member
structure)

conductances in analog It circuit for the ith beam segment,
Equation (22) (no subscript i for a one-member structure)

L2/E1g2 (subscripted when referring to the ith segment)
area moment of inertia

current sources in analog 1 circuit for the ith beam
segment, Eq. (23)

total number of cracks on a structure
total number of column (girder) cracks on a frame structure

length of a beam; characteristic length for a structure

distance between i-lst and ith cracks on a simple beam;
length of the ith beam segment in a structure

number of spans of a frame structure
vector of unknown moments

resisting bending moment at the i-1lst crack in a cantilever

resisting moment at the two ends of the ith beam segment
(no subscript i for a one-member structure)

defined in Equation (66)

variables of the analog 1 circuit, Equation (20);
subscripted when referring to the ith segment




R, relative change in jth modal frequency =1 - wj/wuj

J
Rj relative change in jth frequency due to an equivalent crack
. eq causing the same change in two other frequencies as the
actual damage
s,s',T,T' T circuit variables, Equation (7); subscripted for the ith
Y segment
U matrix of resistances or conductances
ViioVi, resisting cross-shear at the two ends of the ith beam
segment
W, W I circuit variables, Equation (20); subscripted for the ith
segment
y X coefficient matrix of m or y', Equations (30), (69)
\ X(j) submatrix of X corresponding to the jth wall of the
- - structure -
1 Y4 transverse deflection at the ith crack; horizontal dis-
. placement of the ith floor
Yii» Yi, transverse deflection at the two ends of the ith beam
segment (no subscript i for a one-member structure)
. y vector of transverse deflections i
. y% rotation of the ith node (prime does not imply derivative)
7! rotation of the node r' immediately to the right of or
r above a crack
y%l, y%z rotation at the two ends of the ith beam segment
Zi’ Zio resistances in T circuit for the ith segment, Eq. (9)
z coefficient matrix of y, Eqs. (30), (69)
[ a defined in Equation (20)
8 characteristic value; 8* = w2pL"“/(EI)
By characteristic value of the undamaged structure
e(j) jth characteristic value
) ség) jth characteristic value for the structure with an equiva-

lent crack having two other characteristic values in common
with the actual damaged structure
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(J) jth characteristic value for the actual damaged structure
8
actual
Bj characteristic value for the ith beam segment
Y fracture damage = a/b
K torsional spring constant of the fracture hing
v Poisson's ratio
p lineal mass density
8 sensitivity number for the ith crack on a simple beam;
sensitivity number for the crack on the ith member of a
frame structure
8o sensitivity number for a crack equivalent to a group of
q cracks
w5 jth modal frequency
By jth modal frequency of the undamaged structure
vii
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1.0 INTRODUCTION
The study of damage diagnosis stems from the need to assess relia-

bility of structures which have been subjected to unusual levels of
excitation. Such a diagnosis problem requires the availability of an
analytical model and of measurements of some structural characteristics
to be used as inputs to the model. The present investigation utilizes
the modal frequencies of the structure in detecting and identifying
fracture damage. Damping will later be incorporated into the model.

Determination of the crack location and intensity in simple struc-
tures with only a single crack was studied in [1]!, There it was shown
that a crack can be simulated with fracture hinges representing the
softening effect. The classical modal shapes for the beam elements wer
assumed; the boundary conditions were imposed; and the resulting set o
homogeneous equations were solved in terms of the modal frequencies.
Since there are four coefficients associated with the modal shape of each
beam element, the order of the resulting system is four times the number
of beam elements in the structure. The approach soon loses its feasibil-
ity as the structure becomes more complicated. The present report
describes another approach, namely, the use of electrical analogy in
structural analysis, which greatly economizes on computation of modal
frequencies of complicated frame-structures.

The introductory work on electrical analogues for solving static and
dynamic problems of elastic structures is surveyed in [2]. The tech-
niques presented there are suitable for analog computer applications. In
this report, a modified and improved approach to free vibration is devel-
oped which is readily formalized and adaptable to digital programming.
Electrical analogy is further developed to simulate cracks. The applica-
tion of the newly developed technique is extended to investigation of the
behavior of multiple cracks on structures, When the method is applied to
free vibration of multi-story multi-span frame structures, natural freq-
uencies of the analog circuit, hence modal frequencies of the frame, can

INumbers in brackets denote the references.




be determined by exciting the circuit with a variable frequency excita-
tion and by establishing the excitation frequencies at which the response
is maximum. Analytically this corresponds to finding zeroes of a deter-
minant. The order of the system for a multi-cell structure without crack
is equal to the number of nodes. The order increases by two for each
crack present.
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2.0 BASIC ANALOG CIRCUITS
The mode shapes of a Bernoulli-Euler beam under transverse vibration
are given by

y(£) = A coshgg + Bsinhgg + C cosgg + D singe (1)2

where g* = pmzL“/EI; p is the lineal density; w is the modal frequency; L
is the beam length; (EI) is the beam stiffness; and £ = x/L is the
normalized axial coordinate. Four variables are associated with each end
of the beam element, namely, deflection, slope (or angle of rotation),
resisting moment, and shear force (Fig. l). From Equation (1) and its
appropriate derivatives at £ = 0, the variables at the left end are
obtained:

y; =A+¢C

yy' = (8 + D/t

M, = (K - §)EIg2/L2 (2)
v, = (D - B)e1gd/L®

Equations (2) can be solved for the four coefficients in terms of the
four variables

A= (y, + My)/2

(yt - hvy)L/28

ot
[}

(yy= hi;)/2 (3)

o
]

(@] ]
"

(yi + hv,)L/28

V1 ‘IZ

Fiqure 1. Beam Element under Free Yibration.

2Numbers in parentheses denote the equations.
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where h = L2 /EIg2. The variables at the right-end of the beam element
are obtained from Equations (1) and (3) with £ = 1. The result is

y2 = Ay, + ByilL/g + CMjh - DV hL/8 (4a)

y3 = Dy,8/L + Ay} + BM;L/EIg - CV;h (4b)

My, = Cyi1/h + DyiEIg/L + AM, - BV,L/8 (4c)

V, = -By,s/hL - Cyi/h . DM,g/L + AV, (4d)
where

A = (coshg + cosg)/2 B = (sinhg + sing)/2

(5)

(]
[}

(coshg - cosg)/2 D = (sinhg - sing)/2

Any four of the eight variables in Equations (4) can be solved for
in terms of the remaining four variables. The mathematical analogy
between electrical circuits and beams is based on the liner transform
(4). The type and properties of the resulting circuit depend on the
choice of the independent variables. In this study, angles of rotation
are analogous to voltages and resisting moments are analogous to electri-
cal currents.

2.1 T Circuit
When it is imposed that sing # 0, slopes and shears can be expressed
in terms of resisting moments and deflections. Thus, from Equations (4)

v [=hs  =hT  =§8' T' | M
) AT s -T' s M,
vy ' -1 s/h | |wny
SFy | ' -8'  =T/n -S/IL g YzJ

where h = L2/EI1g2 and

S = cothg - cotg s' = cothg + cotg
(7
T = cscg - cschg T' = cscg + cschg
4

"




The first two equations in (6) can be rewritten as

yl = (2 + Zo)My - ZoMy + £

(8)
yé = ZOMI - (Z + ZO)MZ + Ez

; where
Z=-(S+TIL/2EIg Zo = TL/2Elg (9)
= (T'y, - S'yy)s/2L  E, = (S'y, - T'y,)s/2L (10)

Equations (8) are the Kirchhoff's equations for the active
three terminal network shown in Figure 2 (T circuit)3 with slope and
moment (y', M) being analogous to electrical voltage and current,
respectively. The quantities Z and Ej denote resistance and voltage
source, respectively. Negative resistance poses no difficulty in
analytical and numerical analyses. The ends of a beam segment are
simulated by the ports of the circuit. It must be observed that the
electromechanical analogy described above does not simulate the
differential equation of motion, but instead the solution based on the
assumption of harmonic motion [2].

Boundary conditions at the ends of a beam element can be simulated
as follows:

a. Free end or simply-supported end, M = 0: the corresponding port
of the circuit to be left open (for zero current).

b. Fixed end, y' = 0: the corresponding port to be short-circuited
(for zero voltage).

The other boundary conditions at these ends and the last two equations in
(6) are utilized to express the voltage sources, Equations (10), in terms
of the moments, as will be illustrated with a cantilever beam problem
(Figure 3). The Kirchhoff's voltage law applied to the loop yields

(z + ZQ)Ml + El = ( (11)

3Refer to the appendix for the development of the circuit equations.
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[ Figure 3. Cantilever Beam and its T-circuit Analog.
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$; where Z is the analog resistance. From the last equation in (6) with

’I

5 y1 = M2 = 0,

‘1 Vo = 0 = (T'My; = Sy,/h)g/2L (12)

'E from which

$

- y2 = hT'My/S and E; = T'2M,L/2EIgS (13)

\

X The second equation in (13) is obtained from Equation (10).

5 Substitution of Equations (9) and (13) into (11) and the fact that
M; # 0 result in

- T'2/5 =S =0 (14)

Q which yields the characteristic equation of a cantilever beam,

3

Lo 1 + coshg cscg = 0.

- In derivation of Equations (6), it is theoretically sound to impose

Tﬁ that sing & 0. However, during the numerical search of the natural

5 Tfrequencies, sing may get very small at some point, or the structure may
actually have frequencies at or near sing = 0, We shall then take into

. consideration that g is directly proportional to the length L of the beam

) element. Thereby, this problem can be solved by dividing the beam into

'; two sections and representing each section by an individual circuit.

. This will be illustrated with a simply-supported beam. The beam is arbi-

- trarily divided into two elements with a length ratio of 4/6 (Fig. 4).
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Figure 4. Simply-supported Beam Represeqted.with
Two Elements and its Analog Circuit.
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With reference to the figure, the continuity conditions in slope and
moment (voltage and current) at the common boundary is preserved under
the cascade connection of the two basic circuits. The loop equation then
yields

(Zy + Zyg + Zp + Zpo)Myp - E12 + B3 = 0 (15)

Since deflection is continuous at the interface (i.e., yj2 = y21), it can
be shown that

Ei12 = S1'y1281/2L, Exy = = S2'¥1282/2L, (16)

where L, = .4L, L, = .6L, 8; = .48, and By = .68 with g* = pw?L"“/EI.
From Newton's third law V,, = V,,, or

Y12 = = WM, (S] + S3)/(Sy + S3) (17)

Equations (9) and (15) through (17) can be combined to yield the fre-
quency equation

(Sy' + 5,02 - (S +5)%2=0 (18)

It is to be noted that for the particular sectioning in this illustra-
tion, the same problem will arise at the fifth natural frequency where g,
= 2y and go = 3n. Then the same procedure can be applied by further
sectioning the beam. Better initial sectionings are of course possible
than the one presented.

2,2 1 Circuit

Similar to the case of Equation (6) in the T circuit, Equation (4)
can be rewritten such that resisting moments and shears are expressed in
terms of deflections and slopes; that is,

My Qs W/ Q' S A NE7S
M2 -WL/B8  -QL/8 W' Q' y2'
- ; (19)
' Q' W' Pg/L  =P's/L I
v, | W Q' P's/L  -Pa/L | \y2
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AN where
& P = (coshg sing + sinhg cosg)/a P' = (sinhg + sing)/a
A Q = (coshg sing - sinhg cosg)/a Q' = sinhg sing/a
E;; W= (sinhg - sing)/a W' = (coshg - cosg)/a (20)
E? a = coshg cosg - 1 #0
.‘-'(_‘. i
_ The first two equations in (19) can be rewritten as
o My = (G + Ggly;' = Goyp' + I,
N\ ,
- My = Goyll - (G + Go)yzl + I, (21) |
LY
Z:, where G and [ are the analog conductance and current source,
f-:i respectively, given by
L
o G = (Q + WEIs/L Go = -WEIa/L (22) |
;§§ I, = (Q'y; - W'yy)/h I, = (Q'y, - W'y;)/h (23) ;
s |
A Equations (21) are the Kirchhoff's current equations for the active three |
w terminal network shown in Figure 5 (& circuit)* with G and I denoting a !
-~ conductance and a current source, respectively. The pair (M,y') are l
éﬁ again analogous to current and voltage. It must be noted that a &
RS
I circuit can be derived by directly inverting the system in (6). However,
-; the resulting derivation requires more computational effort in solution
}i} of frame-structures. As an illustration, the cantilever beam of Figure 3
‘ii will now be simulated with a T circuit. The left port of the circuit in
it% Figure 5 is shorted yielding the circuit of Figure 6. The node voltage

® equation is

o (G + Gglyz' = I, =0 (24)
:i» The last equation in (19) with y; = y,' = V, = 0 yields

)

= y2 = L0'y,'/8P (25)
~

ir “Refer to the appendix for the development of the circuit equations.
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The characteristic equation is obtained by substituting Equations (22,
23, 25) into (24). Namely,

Q-0Q2/p=0 (26)

With reference to (20), Equation (26) is equivalent to 1 + coshgcosg = 0,
if 1 - coshgcosg # 0. When the value of a, Equation (20), approaches
zero, numerical computation diverges. Similar to the approach in T
circuit, the beam can be subdivided into elements as described in the
previous section.

2.3 Simulation of Crack with Circuit Analogy

A cracked section in a beam is modeled following the method of frac-
ture hinge [1]. The crack is mechanically represented by a torsional
spring of spring constant «x. Slope is thus discontinuous at the cracked
section, the discontinuity being given by Ay' = M./x. Such a disconti-
nuity is analogous to a voltage drop in the circuit theory. The crack
can then be simulated with a resistor of resistance -1/x. Hence, a beam
with a single crack is represented by two circuits (T or §) joined by a
“crack resistance,” -1/x. Examples will be given in the next chapter
where it will also be shown that crack intensity is quantified by the
nondimensional sensitivity number 8 = EI/cL [1].
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3.0 MULTIPLE CRACKS ON SIMPLE BEAMS .

In this investigation, damage diagnosis is based on the knowledge of
the new modal frequencies after the damage has occurred, together with
the knowledge of the material properties. If there are uncertainties
about the material properties, then the frequencies must be measured
prior to the damage also. This point will be explained in Section 3.2.

Each crack in a structure is characterized by two variables associ-
ated with it, namely, location (e) and intensity (y). When these charac-
teristic variables are known, changes in the frequencies can be computed
with the method presented in this chapter. This will be called the
forward problem. The inverse problem of locating and identifying the

cracks, however, requires (2k + 1) measurements of frequency, where k is
the number of cracks present., The extra measurement is needed to pin-
point the cracks because of the multiple~valuedness of the equations.
Only in some special cases, 2k measurements are adequate to accomplish
the task. On the other hand, the number k is not known a priori in a
practical situation. Besides, in practice, it may not be possible to
measure more than the first few modes. [a application it is not possible
to locate and identify the cracks deterministically when k is greater
than two. However, valuable insight may be gained by investigating the
forward problem.

This chapter studies the group behavior of multiple cracks on simple
beams. Guidelines are presented for damage diagnosis involving multiple
cracks. Examples are given to illustrate the applications of these
guidelines.

A beam with k cracks can be represented by k+l circuits joined by
resistors simulating the cracks. The unknowns in the T-circuit analogy
are the moments (currents) at the cracks and at the ends of the beam.
Hence, there are (k+1) unknowns. On the other hand, the unknowns in the
M-circuit analogy are the slopes at the ends of the beam and at the

cracks. There are two unknown slopes at each crack. Hence the order of
the system is larger with I circuits. The T~circuit analog is found to




be more suitable for multiple-crack analysis. Therefore this section
develops the characteristic frequency equation for the general case,
establishes the conditions under which multiple cracks become equivalent
to a single crack, and illustrates the inverse problem when k = 1,

3.1 Cantilever Beam with Multiple Cracks

Figure 7 depicts the analog circuit for a cantilever beam with k
cracks. Continuity of moments at the cracked sections {is preserved via
the continuity of electrical currents through the “crack resistors,"”
-1/Kj. The order of the system of mesh current equations is (k + 1).

Namely,

(Z) + Zyg)My = Z)oMy + Ey; = 0

“ZygMy + (Zy + 219 + 2y + Zpg = 1/k) )My = ZpgM3 = Ejp + Epy = 0

. (27)
Lo * (e * Lot Leer F Lanyo T VMg < By * By o O
From Equations (10), the analog voltage sources {Eij} are:
pos , b ]
Ell\ Tl 0 e o o 0 ] (yl \
Er2 $;' O B2
E2x =SS! T 0 . Y3
=4 ' (28)
E22 x -T,' S 0 Yy >
7 Ey, 0 ... T st 0 Y
o ‘
D Exer,1 B 0 <. 0 “Sgn Tk+1[\ yk+1/
P =
-

where yj is the deflection of the jth cracked section and Yi+1 is the

deflection of the free end. These deflections are solved for by imposing
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Figure 7a. Cantilever with k Symmetrical Cracks.
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Figure 7b. Equivalent Fracture-hinge Model
of the Cantilever in Figure 7a.
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Figure 7c. T-circuit Analog for the Equivalent Model of Figure 7b.
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-,'.f- the shear boundary and continuity conditions. That is,
W Ve, =V i=1,2 k
j2 +1,1 il AR
: i (29)
z Vg#1,2 = 0
7
-f'
where the first subscripts refer to the numbu”s of the elements within
.?-f the beam and the second subscripts 1 and 2 denote the left and right ends
of the corresponding elements. Substituting the last two equations in
the T-circuit equations (6) into (29) and rearranging, we obtain
3-2 Lzy=xn (30)
= ) A .
A
-t
= where y and m are vectors of deflections and mesh currents, and Z and X
are square matrices of order k+l given by
£ - -
-‘:: Sl+52 Tz 0 0
S T, S,+S3 T, .
0 LB S3tS, Ty .
& Z = (31)
'
™ .
N .
‘ . Tenr
\;’ | 0 o o o o Tk+l Sk+1
g -
N -
~ —
"’ Tl. -Sl.-sz' Tz' 0 . . . 0
E:.' 0 Tz. "Sz"S3| T3' .
= X = T3' =S4'-S," . (32)
.-‘._: . Tk
L ]
- ' [l
o . =Sk =Sk
S
:I 0 . [ [ ] T.
\: L k+1 ]
.l
% 15
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,iis Hence, Z is a tridiagonal symmetric matrix and X is an upper triangular
:;: band matrix with a band width of 3. Solving for y from Equation (30),
Wt provided Z is non-singular, we have

:::

o~ y = hZ X m (33)
;:f Substituting (33) into (28), and then the result into (27) along with the
o analog resistances from Equations (9)
a%

% (xTz7lx - um =0 (34)
s, - s -~ L%
N where

N s, T 0 .. .0 7

:';:: Tl Sl+52+2818 Tz .

- Uu =10 Tz 52"’53""2928 (35)
a0 -

:::; . Tk

~ .

R 0 T S, +S, . .+ 20,8
. . e L] . . . k k k+1 kJ
,if with 9j being the sensitivity number for the jth crack given by [1]

\i: 2..b Y 2

0; = El/Le; = 3n(1 - v2) () [ ALF(A)1°d (36)
) ! J 0

fg where y = a/b is the relative crack depth (Fig. 7a) and f(y) is the
;53 dimensionless fracture intensity factor for symmetric cracks [1], namely
e fly) = (1 = y)"F3[1.122 - 2.363y + 4.367y% - 4.88yS + 2.845y% - 0.663y°]
: (37)

As Equation (36) implies, 8j s based on the total length of the beam.

54 For non-trivial solutions of (34), the determinant of its symmetric
o coefficient matrix must vanish, yielding the characteristic equation %
e det (X727l -u) =0 . (38)
é.
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%iﬁ When the crack spacings (ej) and sensitivities (gj) are known, the
5:? natural frequencies can be computed from Equation (38). In computing the
Li matrices in Equation (38), the variables Si» Ty S%, T} (Equation 7) per-
% taining to the ith beam segment are computed using ejg = (Li/L)g
(;. where g is based on the total length of the beam.
s 3.2 Damage Diagnosis with a Single Crack
F) Damage diagnosis using the present model is accomplished with the
[ ¢ knowledge of frequencies after the damage has occurred. Since the
na characteristic equations of structures are in terms of dimensionless
' characteristic values {8}, the material properties EI and p must be known
accurately to compute {g} from the measured frequencies {w}. If the
properties are known, then g8 can be computed from
= 8 = Lip?/ENY4 | (39)
,ﬁ': When three measurements of frequency are available for the czse
}i: k = 1 (single crack), exact location (e) and severity (@) of the crack
tu?f can be determined. The procedure will be illustrated with the cantilever
g beam problem developed in the previous section. The coefficient matrix
;EE in Equation (34), with k = 1, is of the form
LN
"."-
o xXTz7hx - u =["11 h12 }5 H(a,e,8) . (40)
f)ﬂ ST T 7 Ihi2 hap - 28| T
:E? where the g values in Equation (40) are the post-damage values computed
Eﬁi from Equation (39). The damage characteristics e and 8 are to be deter-
[ mined from the determinant of H, which can be written as
=X detlH(8,e,0)] = det[H(8,e,0)] - 208hy; = 0 (41)
.'~'.\
6,.
e where e = L,/L is the normalized crack location. It is noted that when
{&: B assumes the pre-damage values {g,}, det[H(g,e,0)] is equal to 0; that
ﬁ; is, this term is the characteristic equation for the undamaged (8 = 0)
F‘ beam. There are three equations emerging from Equation (41) for the
e.i three known characteristic values. A numerical code for damage diagnosis
R
& ’
-
N
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has been developed in which e is varied through the range (0,1). o is

computed, for a given e, using the first known characteristic value in
Equation (41), namely,

(1)

oe) = detlh(a'!e,001/28'ny, (42)

where the superscript on g denotes which characteristic value is used.
Then with the second known characteristic value, al2),

~

det(H(g'2) e,0)] = 0 (43)

where the value of 8 is now substituted from Equation (42). A zero-
searching routine is used to find the roots of Equation (42) which, in
general, yields multiple solutions for e. 8{3) can then be used to
locate the crack. With e known, 8 is computed from (42).

In the case when the beam deviates somewhat from the Bernoulli-Euler
theory or when the material properties are uncertain, computing {g} from
Equation (39) may not be suitable. The knowledge of modal frequencies
prior to the damage is then necessary. Since w and wy are proportional
to 52 and Bﬁ. respectively, where 0y and 8, are the values for the pre-
damage structure, and w and 8 are the post-damage values, the following
relation holds:

B = Bu(m/mu)]'/2 (44)

It is assumed in (44) that the proportionality constant between w, and sﬁ
does not change after the damage has occurred. The characteristic equa-
tions do not involve any material properties and {g,} can be computed
from the characteristic equation for the undamaged structure. With

{wy} and {w} measured in the field, {B} can then be computed from
Equation (44) and the above procedure can again be employed to determine
e and 8. Only the beam length L, the Poisson's ratio v, and the slender-
ness ratio (b/L) are required to determine the actual crack location L,

and the crack depth a (Eq. 36). Since v is nearly the same for most
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metals, the theory becomes independent of the specific material of the
structure if the material is a metal, if the damage is presented in terms
of L, and a, and if {g} are computed from Equation (44). The theory fis
totally independent of the material properties and dimensions if the
damage is presented in terms of e and 8. The data are more conveniently
presented versus the relative frequencies (w/wy) or the relative fre-
quency changes (1 - w/w,) rather than versus the absolute frequencies,
whether {g} are computed from Equation (39) or (44). In this investiga~
tion, relative changes are chosen as the means to convey the numerical
results.

oy

In practice, the response of structures deviate from the Bernoulli-
Euler theory. It is therefore more accurate to compute (g} from Equation
(44). Equation (44), in effect, adjusts the parameters of the specific
structure such that the structure frequencies match those predicted by
the Bernoulli-Euler theory.

In practice, especially for structures whose frequencies are close
to each other, the reduction in a certain frequency due to damage may be
small while the reduction in the next frequency may be large enough that
the post-damage value of the latter frequency may drop below that of the
former. This phenomenon is called cross-over. When cross-over occurs
and when one is not aware that it has occurred, the correspondence estab-
lished between the pre-damage and the post-damage values of the frequen-
cies will be in error., If, in such a case, one uses Equation (44), which
involves the ratio of the pre-and post-damage values of the frequencies,
the computed characteristic values will be incorrect. On the other hand,
if Equation (39), which involves the structural properties, is used, a
knowledge of the pre-damage frequencies is not required. Hence, it
becomes immaterial which pre-damage frequency a certain measured post-
damage frequency corresponds to; the important point is that there are
some frequency values available which satisfy the post-damage character-
istic equation (Eq. 41). If the structural properties are uncertain,
they can be identified by measuring one frequency prior to the damage.
That is, the constant K in the relation By = Kwé/z can be determined by
measuring one w, and computing the corresponding g, from the pre-
damage characteristic equation. The same constant can later be used to
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compute all the needed post-damage characteristic values g from the
measured post-damage frequencies w by means of g = Kmilz. In this case,
however, the Rj values cannot be used to present the data, since the
ordering of the post-damage frequencies according to the magnitudes of
their values does not correspond to the pre-damage ordering, unless the

fact that cross-over has occurred is known.

3.3 Equivalence of Multiple Cracks to a Single Crack

3.3.1 Approximate Characteristic Equations

In this section, we study the conditions under which the identifica-~
tion of multiple cracks is not readily distinguishable from that of a
single crack. For this purpose,equivalence of two cracks on a simply-
supported beam to a single crack is first established analytically.
Numerical results for larger numbers of cracks are then presented. It is
established that, when equivalence holds, solution to the inverse problem
of damage diagnosis cannot differentiate between single and multiple
cracks.

Figure 8a depicts a simply-supported beam with a single crack and
its T-circuit analog. The mesh current equation together with the Equa-
tions (9) and (10) yield

=(Sy + Sy + 208)M - (S;' + Sp')y/h =0 (45)

where M and y are the resisting moment and deflection at the cracked
section, respectively. The continuity condition V,, = V,; at the crack
allows y to be solved for in terms of M. The characteristic equation for
beam with a single crack is thus

(Sy" + 53')2/(S; + Sp) = (Sy + S, + 288) = 0 (46)

With reference to Figure 8b, the characteristic equation for the case of
two cracks is obtained in the form of Equation (38) with

20

“w --.- » -{-_-,—."--','_n v L » ‘-.
LR LNR T SCRET R Sr Y DT S A Ve

A SR A
SRRy



_r,‘?'

[}
S LA

.
¢

A48, 4

radhd
L)
.

ey WS
i

~ o

[N
-‘ -

.
»

Al » ‘q,'

(.
2

-

PARAAATY

.-.‘.- - - '.»

€ 7y Z, Ej; -1/k €21 Z2 . Z, Ej2

— - — = — f———

Figure 8a. Simply-supported Beam with a Single Crack and its
Circuit Analog.
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Figure 8b. Analog Circuit for a Simply-supported Beam with Two Cracks.
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N -5,'=S," T, $1#S, T,
Y
7 X = =
T h ' ' -
» T2 =S2'-S3 T2 S2+S3 (47)
: U= SI+SZ+2918 Tz
. T, S,+53+2028
; Now, assuming that the spacing between the-cracks is sufficiently small,
fﬁ that is, e; = L,/L = ¢; we obtain the following approximations:
) cosh e 2 1 + (eg)2/2 , sinh e % g + (ee)3/6
= . (48)
% cos epp =1 - (eg)?/2 , sin e;8 # 8 - (e8)%/6
It then follows from Equations (7) that
-
-2
X S £ 28/3 , S’ *2/e8 , T2=€8/3 , T3' 22/eg (49)
. Substituting (49) into (47) and performing the necessary operatidns, we
Y have, for the matrix of coefficients in (34),
‘; 1 '1 hll hlZ'
'-:;. x'z7lx - u é-}; ‘—42- (S + S3) + (50)
‘\ D - l(es) -1 1 hlz h22 ’
_P where
- 2
< d = §yS3 + 2(S; + S3)(eB)/3 + (eB)"/3
N hyp = 4(2 + $1S3)/eB + [S1253 + 457 = $,53(S,+ 20,8)]
b
N hyp = -2(4 + S}S; + $,S4)/es = 2(S) + §3) (51)
)

hyp = 4(2 + S;S3)/eB + [S1S3° + 453 = $,55(S3 + 26,8)]

[ 4
a_»

The above analysis is valid at points where S,, S;', S5, S3' are of

» smaller order of magnitude than (1/eg). The characteristic equation for
e the two crack case is thus
: 22
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det(xTz71x - v) = ’:—51%5 l(sl' + 5542
"t (e

- Sy + S3)[S; + S3 + 2(ey + 65)81t + 0(1/eB) = 0 (52)

When Equations (46) aﬁﬁ (52) are compared and it is noted that S;, S,',
S2,S2' in Equation (46) are nearly equal to S;, S,', S3, S3', respec-
tively, in Equation (52) for small values of e,, it can be established
that the difference between the characteristic equations for one- and
two-crack cases is of the order of the product e,s; that is, the differ-
ence is larger for higher modes. The effective sensitivity number for
the two cracks approximates, as shown in (46) and (52), the sum of the
individual sensitivity numbers, 6 = 8, + 9,. It is shown numerically
that closely spaced multiple cracks in general cannot be differentiated
from a single equivalent crack.

Similar results are present for a clamped-clamped beam. In the case
of a cantilever beam, however, the expressions are more complicated.
Numerical results for a cantilever beam indicate the existence of an
equivalent single crack to closely spaced multiple cracks. Since within
10-15% distance of the free end of a cantilever beam frequency changes
are small, the numerical results are not very reliable in that region.

Equivalence of closely spaced cracks to a single crack is useful in
the forward problem for studying the behavior of multiple cracks. The
implication for the inverse problem of damage diagnosis is that, using
the modal method, it may be impossible to distinguish between closely
spaced multiple cracks and a single crack. In special cases, the equiva-
lence exists for some configurations of multiple cracks, not necessarily
closely spaced. For the general case, we may establish a lower limit on
the spacing of cracks which is assumed, without loss of generality, to be
uniform,

3.3.2 Lower Limit of Spacing

Figure 9 typically illustrates the lower limit of crack spacing for
a cantilever beam when uniformly spaced multiple cracks become, as a
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whole, indistinguishable from a single crack. In Figure 9, as in subse-
quent illustratiors, each crack assumes a sensitivity number ey of

value 0.174 which is taken to be the lower limit for failure for a beam
of slenderness ratio of 0.05 (corresponding to a relative crack depth

v = a/b of 0.6). Figure 9 is generated by the trial method. With the
number of cracks (k), individual sensitivities (ej) and the first crack

location (e;) given and an initial value for the spacing between the
cracks assumed, the first three characteristic values g are computed (the
forward problem). These values of g are called the actual values. The
first two of these are then used to solve for a single crack as described
in section 3.2 (the inverse problem with k = 1). With the e and ¢ values
for the equivalent single crack thus known, the third characteristtc

value for the equivalent crack is computed (the forward problem with
k = 1). The g values for the equivalent crack are called the equivalent
characteristic values, the first two of which are the same as the actual

(3) (3)
eq and Bact is not equal to the

error allowance (i.e., +0.001), then a new value for the crack spacing is
assumed and the whole procedure is repeated until the required agreement

values. If the difference between g8

is reached.

There are three cases of different crack locations in Figure 9. In
the first case, the first crack is very near the built-in end, at a
normalized distance of e, = 0,001 from the end. In the other two cases,
the cracks are moved toward the free end with e; = 0.1 and e; = 0.6,
respectively. In all the cases, (k - 1) equally spaced cracks follow the
first crack. Table 1 shows the numerical data corresponding to the
e, = 0.1 case. If the tolerance level in ség) is increased, the curves
in Figure 9 will shift upward (see also Figure 12). As the number of
cracks increases, they must be more closely spaced to be representable by
a single crack. The lower limit of spacing depends on where the group of
cracks is located, At the built-in end and at e; = 0.6, more widely
spaced cracks can become indistinguishable than at e; = 0.1. The lower
limit of spacing is dependent also on 84 values. For example, when
e; = 0.1, k =2 and 9; = 95 = 0.01 (corresponding to y = 0.2 for
b/L = 0.05), the smallest crack spacing for which the double-crack damage
becomes indistinguishable from a single-crack damage is e, = 0.025 under
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TABLE

k Spacing, € 8(3)

1

Numerical Data Corresponding to e, = 0.1 Case in Figure 9

(3)
Beq eeq eeq

2 .0065 7.806
3 .0033 7.799
4 .0021 7.793
5 .0015 7.789
6 .0011 7.786

ng) - 8(3)|.§ 0.001. Figure 10 illu
first three frequencies, Rj =1- mj/m

cases in Figure 9 where wyj is the jth
change is based on the corresponding o

number of cracks on a cantilever beam,

7.807 .3479 .1032
7.800 .5219 .1032
7.794 .6958 .1031
7.790 .8698 .1029
7.787 1.0438 .1027

strates the relative changes in the
uj,corresponding to two of the
undamaged frequency. Each

rdinate in Figure 9. For any given
the largest decrease in the funda-

mental frequency occurs when all the cracks are grouped at the built-in

end. On the other hand, for geq > 0.3
second frequency is observed at a loca

» the greatest change in the
tion of 0.55-0.60 (Fig. 11). Such

information can be utilized to set lower limits on the possible number of
cracks on the structure as will be illustrated later,

Table 1 lists the equivalent loca

tions and sensitivity numbers when

cracks are grouped at e; = 0.1, The table indicates that, for the

equivalent single crack,

€
eeq = 0,174 k , eeq = e +

where ¢ is the uniform crack spacing.
in general, Begq is approximately equal

(k = 1)
B

(53)

Numerical results indicate that,
to the sum of individual sensi-

tivity numbers o and that the equivalent crack location €eq is

closer to the cracks with larger sensi
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3.3.3 Guidelines for Diagnosing Multiple Cracks
In general, with two actual characteristic values known, more than
one solution exists for a single crack as was pointed out in Section

3.2. If the structure does indeed have only one crack, the crack can be
diagnosed accurately with the knowledge of a third characteristic value;
that is, the true solution can be pinpointed among the set of discrete
solutions. In other words, two different single-crack configurations can
agree in at most two characteristic values. On the other hand, a
multiple-crack configuration can have the same three characteristic
values as a single-crack configuration. Fiqure 12 compares the actual
3(3) values due to two cracks on a cantilever beam with 3(3) values

which would stem from the presence of either of the equivalent single
cracks. As in the previous illustration, equivalence is defined as

323) = siii for j = 1,2. In Figure 12, the first crack is kept at a
constant location (e, = 0.1) while the location of the second crack is
varied relative to the first., In the figure, e, = 0 implies that the two
cracks coincide; that is, there is one crack at e; = 0.1 of o = 0.174

+ 0.174 = 0,348, {B;gl, j = 1,2,3} is computed first for each e, value
(the forward problem with k = 2), The first two B85t values are then
used to solve for the equivalent single cracks (i.e., to solve for eeq
and 0q 3(3) is then computed corresponding to each (e,e)eq. There are

q° “eq
two single-crack solutions for each {s;gl ég: and ség:

curves in Figure 12, The second solution will be ignored since ség) is
2

significantly different from sgzl over most of the range of e,. For

small values of e,, the actual and equivalent 3(3) values agree
closely. In such a case, the location of the damage can be established
accurately (egq), although the number and intensity of the cracks are
uncertain. (In a real situation only {sggl} and {ség), eeq’ eeq} are
known, the former from the measured {wj} and the latter by computa-
tion.) As the spacing between the cracks, e,, increases, aég) deviates
more from the actual value and eqq is no longer indicative of the
damage location. The only conclusion that can be drawn in this case fis

that there is more than one major crack on the beam.

} set shown by the g

29

-t
A




M)
XA

/4'.._‘1,

Nt
R
”l' ..‘.

. e
- »"f‘.(‘
. %o Y

7~
(4 l‘““ -'.

[
Ly Ay & 8, 458, 8,

800 J : 1 v J 1

xa

e

) k=2,31=.]0,61’923.174

_.‘O- WD CTEED AN  m— e B -—— - eEm— -—— -— - -— -— -— R D  aEEE———

e C

.

7.84

. (3
4 '.t ‘.l .
° [

Ry ]

[
i I
W5,

Q

.a.{l

7.67

ta'e

I's

4

¢
o))

~ .10

'y

- .15 ' . -
7.24 () -
-\_-': . B eq.

Third Characteristic Value, 8(3)
~4
-

5 .20
A 7.0F'" 2 o 1 1 ¢ fl

2 .0 .04 .08 .12 .16 .20 .24 .28
o Distance between the Cracks, e;

o Figure 12. Third characteristic value (5 fzz) variation as a function of the
® location of the second crack with the first crack fixed. The
Other curves represent (s)(3) values yielded by the single cracks

-s0lved using the first two actual modes.

TeteTe
Py
% e 8,

A

N %
.

. @

LR

LA

Y@,
) n:-"g.llxn

5 ¢

AN

30

.,

LR

a

Il“

LSS ..-.._.-._ ----- Tt T AN et T T AR L ", O
'___. o ..-..-r.-r..' ',\_,-._.. ~ \'_-.\v._’_-;}ﬂ' X0 .'.-'\l'\
CAL b K (i WA

»
LN

-,
), "\'

lF'.‘.p'.{.’\ -..-!;.\. _'\" n"&‘n'*“ ‘_ Lo
RO Y X 0 X s W WA 'y v




variations of the location and intensity of the equivalent crack
giving rise to Bégi are plotted in Figure 13. For small values of e,,
Beq, = 01 + 62 and egq, x € + e,/2, The two upper curves in Figure
12 intersect a second time at e, = 0.255. This means the following:
two cracks, one at e; = 0.1, the other at a normalized distance of 0,255
away from it with 9; = 05 = 0.174 cause the same decrease in the first
three frequencies as a single crack located at e, = 0.024 with ¢ = 0,187
(from Fig. 13). Furthermore, there may be other combinations of multiple
cracks which may cause the same frequency changes. It is clear that
probabilistic methods must be resorted to in diagnosis of multiple cracks
when an insufficient number of frequency measurements are available.
Nevertheless, some qualitative conclusions may be reached with the help
of Figures 9-11 which are independent of material properties. In partic-
ular, when a s»lution has been obtained for a single crack and a decision
has to be made between a single crack ¢-' a group of closely-spaced less
severe cracks, one may argue that formaci... of a single crack is more
likely for a beam undergoing bending. In other words, a small mode I
type crack is likely to propagate under bending rather than other cracks
forming nearby. On the other hand, one severe and several minor cracks
may exist distributed along a structure in which case the objective is to
be able to diagnose the major crack. Guidelines may be established
qualitatively based on the frequency change curves for a cantilever beam,
Figure 11, in which case we may propose that

a. If Ry is considerably smaller than R, and/or R3, then the
(major) crack(s) is at a normalized distance greater than ~0.45 from
the built-in end (Fig. 11). In addition,

i. if R, is considerably larger than R3, the crack is located
around 0.45-0.65 relative to the built-in end (Fig. 10b)(see Example 3
below);

ii. if Ry is larger than R,, the crack is at a distance greater
than ~0.7 or;

iii, if R, and Ry are comparable, then there may be one major
crack at 0.65-0.70, or two major cracks, one each in the peak regions of

the R, and R3 curves.
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b. If R, is significantly smaller than both R, and R3, the crack is
in the region 0.2-0.3, or there may be a (major) crack at 0.2-0.3 and
another (major) one at a distance greater than 0.8, the latter being more
likely if Ry is greater than R;.

c. If Ry is significantly larger than both R, and R3, and R, and R3
are rather small, the crack is at 0.1-0.2,

d. If the values of R;, R, and Ry are comparable, several possibil-"

ities exist. To list a few, there may be a number of cracks distributed
over the beam (Examples 1 and 4 below); the crack may be at 0.35-0.40; or
there may be a crack at 0.0-0.3 and a few others at locations greater
than -0.5.

The term "major crack" employed in the present report stems from the
assumption that a beam fails if an individual crack reaches a relative
depth of 0.6. Whether a shallower crack may be considered major depends
on the particular application. The following table presents oL/b values
corresponding to a range of relative crack depths y. v is taken to be
0.3. Thus, if y = 0.3 is considered serious for a beam of b/L = 0,05,
then a crack with 9 greater than 0.024 would signal a major crack.

Y aL/b
.051
.204
.484
.966

1.825

3.485

L]
(=230 S, B — S JS T R ]

In the present study, only the first three natural frequencies are
assumed measurable. The peak locations of R, and Ry curves in Figure 11
are weak functions of 8 and shift to the right as ¢ increr-.~. For
example, as 9 is increased from 0.01 to 0.50 (effective value for a few
closely spaced cracks), the peak of the R, curve shifts from the location
0.530 to 0.563, while the second peak of the Ry curve shifts from 0,710
to 0.760. (See also [1], pp. 29-31.)
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Similar guidelines for different structures can be established based
on minimum and maximum frequency changes although the procedure may
become tedious for more complicated structures. The following examples
illustrate some of the applications. In all the examples, a slenderness
ratio of b/L = 0.05 is assumed.

Example 1. To illustrate the uncertainties involved in damage diag-
nosis when the three Rj values are comparable in value, the following
relative frequency changes are assumed to have been computed from the
measured frequencies of a cantilever beam: R; = ,0579, R, = .0586,

Ry = .0591., It is to be determined whether the damage mainly consists of
one major crack.

The (actual) characteristic values are computed from

s(j) = s(j)(l - RJ.)1/2 (54)

act

where {sﬁj)} are the undamaged characteristic values. The first three of
these for a cantilever are 1.8751, 4.6941, and 7.8548. From Equation
(54) in particular, s;zl = 7.6192. The first two actual characteristic
characteristic values yield, according to the procedure given in Sec~-
tion 3.2, one solution for a single crack located at €eq - 372 with

eeq = .128 (corresponding to a relative crack depth of y = .55). These
equivalent values are then used in the forward problem with k =1
(Equations 31, 32, 35, 38) to determine the third characteristic value
due to the equivalent crack. The computation thus yields sé3) = 7.614,
Then,

(3) _ ,(3)
act Beq = ,0018 .

8
If we assume, for the sake of argument, that 3(3) is much more accurate

eq
Bgzi ;2{ is not better than +.0018, the equiva-

lent single crack solution may be accepted as the true damage diagnosis.
On the other hand, the given Rj data were actually generated in a

and if the accuracy in g
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forward problem with ten cracks of equal intensity (8 was taken to be .0l
{(i.e., y = .2] for all the cracks) located such that e; = .001, e; = .094
for i = 2,3,...,10. Thus, in this case, even though the actual and
equivalent 3(3) values match closely, a firm diagnosis cannot be

reached.

Example 2. The frequency changes and the third characteristic value
have been computed from the measured frequencies similar to the first
example: Ry = ,379, R, = ,210, R3 = .144, sii% = 7.2672. What conclu-
sions on the damage configuration can be reached from these?

The first two characteristic values, computed as in the first exam-

ple, yield two solutions for an equivalent single crack. One of the
(3) (3)
eq

therefore disregarded. The solution which gives 3(3) = 7.2678 1is

eeq = ,0077 and eeq .400. The largest value of R, for any number of

eeq = ,400. The largest value of Ry for any number of cracks occurs

when all the cracks are grouped at the built-in end (Fig. 11). From

Fig. 10a, when there are two closely-spaced cracks at the built-in end
with 8, = 85 = .174, R; is equal to 0.354. For three cracks in the same
region, Ry = .432. The measured value of R, given above is .379. Hence,
it can be concluded that there are at least three cracks on the beam
(based on the assumption that 8 for each crack is not greater than the
limit of failure, 0.174, for b/L = .05). In principle, a large number of
minor cracks (i.e., cracks with 8 less than 0.01 in this case) can cause
the same reduction in the first three frequencies as given in the problem
statement. However, it may be argued that the likelihood of having
several major cracks distributed in the peak regions of the Rj curves

is greater.

solutions yields a g'~‘value which is much different from Ba and'is

Example 3. This example illustrates the effect of minor cracks on
Rj values when minor cracks are present in addition to a major crack on
a cantilever beam. The locations and intensities of the cracks are
known., The characteristic values s(j) are determined from Equation (38)
in Section 3.1 (the forward problem). The relative frequency changes are
then determined from the characteristic values, namely,
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o a. First the analysis will start with one crack (Fig. l4a), i.e.,
i;: k =1, at e = .54 (in the peak region of the R, curve, Figure 11) with
> 8 = .174 (y = .6). The relative frequency changes are then computed as

J Ry = .029, Ry = .137, Ry = .0l4.

;f: b. MNow, in addition to the crack in part (a), there are five more
T cracks of intensity o = .0026 (y = .1) each, distributed on the cantile-
. ver such that e; = e, = e3 = eg = .1, e, = .24, and eg = .09 (Fig. 14b).
‘Ej The actual characteristic values are computed as s(l) = 1,840, s(z)

e = 4.351, and 8(3) = 7,768 from which R, = .037, R, = .141, Ry = .022.
_Qi If these values of Rj were computed from actual measured frequencies

!E and the damage were to be diagnosed (the inverse problew), then {g(J)}
zi would be computed from Equation (54) in Example l. When this is the

case, 3(1) and 8(2) are used to find a solution for a single crack

; which is (eeq eeq) = (.51, .183). This single crack would produce

A 333 = 7.845 or Ryeq = .0026.

£ '

X2 .54 |

SONNANN
—.H.—

(a)
: : ! L
7 - T .05
/ . R i N
. T T 5 11
T L2d 1 a9

Figure 14. Cantilever with One and Six Cracks
: (distances are normalized based on
the beam dimension in the corresponding
direction).
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c. The same case as in (b) except @ are changed to .01 (y = ,2)
with the major crack remaining the same, i.e., 8, = .174. Hence, the
depths of the minor cracks are doubled. The values of ey and 8 are
used, as in the previous cases, in the forward problem to compute
Ry = .058, Ry = .151, Ry = .043. R, and R, are in turn used in the
inverse problem of damage diagnosis with k = 1 to obtain (ee )

(3)
eq

. The above cases indicate that the value of R, did not change signif-
2 icantly when minor cracks were added to the beam. If this were an actual
damage diagnosis problem, in which case only {s(j)} and {Rj} would be
known from the measured data, then a decision would have to be made about
the computed (eeq, eeq)' In case (b), Ry = ,022 whereas R3eq = ,0024.

In case (c), Ry = .043, but R3eq = _0064. Hence, based only on compari-
son of R3eq with the actual values of R, the solutions for (eeq, °eq)
would be rejected. Nevertheless, the equivalent damage parameters in
both cases closely identify the major crack located at the distance of
.54 from the built-in end with 9@ = ,174, When there is no minor crack on
8__) would be computed as (.54, .174).

eq’ “eq
The effect of the minor cracks on (e eeq) is thus seen to be small.

qa’ %eq

\ = (.47, .224), 8 = 7,830, R3eq = .0064.

the beam, as in case (a), (e

eq’
Hence, it is concluded that, when the given R. values exhibit a pattern

i
such as in this example, the discrepancy in Ry and Rseq or in 3(3;ct

ég)can be ignored when the interest is in diagnosing the major

crack.

and g

Example 4. This example illustrates different crack configurations
which cause the same decreases in the first three frequencies. In each

- case, the crack locations and intensities are given from which the

4 characteristi< values and the relative frequency changes are computed

- (the forward problem).

i
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The three crack configurations are

a. k=3, e; = 0.013, e, = 0.404, e3 = 0.408
81 = 82 = 63 = 0.05 (y = 0.405);
b. k=4, e; = 0,001, e; = 0,15, e3 = 0.23, e, = 0.25
91 = 62 = 91. = 0.01 (Y = 0.2)’ 93 = 0.174 (Y = 0-6);
c. k = 8’ el = 0.001’ ez = 0.06’ ea = 0014’ e“ = 0.20’
€g = g = €9 = 0.10, eg = 0.19
8 = 0.021 (y = 0.28) for all 8 cracks.

A1l yield the same changes in the first three natural frequencies,
namely,

R, = 0,099, R, = 0.108, Ry = 0.089.

There may likely be other combinations of cracks which produce the same
results. When the first two characteristic values are used to solve for
a single crack (the inverse problem of damage diagnosis), €eq = 0.384,
eeq = 0.249, Rgeq = 0,081 are obtained. If the above Rj values had been
the actual measured values for a damaged cantilever and if the true
situation had been as in (b), then the major crack (63 = .174), which is
at a distance of 0.381 from the built-in end, would have been diagnosed
accurately. However, uncertainties always exist when the three Ry '

values are comparable to each other as illustrated in this example.

Example 5. This example is intended to show that, when multiple
cracks exist on a beam, a crack which is located in the peak region of an
Rj curve affects the corresponding frequency, wj, the most.

a. Given k = 1, e; = 0,001, 9, = 0.174. The frequency changes are
computed as (the forward problem)

Ry = 0.234, R, =0.162, Ry = 0.125.

b. A second crack is added to case (a) such that e, = 0,546 (i.e.,
near the peak region of the R, curve, Figure 11) and g, = 0.174. Then

Ry = 0.246, R, = 0,272, Ry = 0.162.
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i§£ c. A third crack is added to case (b) such that e; = 0.185 (i.e.,
fs near a peak region of the Ry curve) and a3 = 0.174 [parameter values in
K;’ cases (a-b) are preserved]. Then
o R, = 0.247 Ry = 0.301, Ry = 0.250.
RO If 83 = 0.01 instead of 0.174, then
U
P> Ry = 0.246, R, = 0.273, Ry = 0.167,
’;ﬁ In case (b), the greatest dcrease relative to case (a) occurred in the
O second frequency, whereas in case (c) it was the third frequency that

o suffered the largest decrease relative to case (b) although this decrease
was insignificant for 83 = 0.01., The example illustrates the effect of
crack location and intensity on the frequencies and confirms the useful-
ness of curves such as Figure 11 to diagnosis of damage as outlined in
the guidelines presented earlier.

Example 6. 1In all the above examples, 3(1)

Mak ol
L) 1
Wt

and 3(2) have been used in

;i; the inverse problem of diagnosing the major crack as described in Section
'
. 3.2, It has been found numerically that using the pair (3(1), 3(3) (or
AN (8(2), 3(3)) yields better results in some cases as this example

7 illustrates.

S a. Given k = 4, e; = 0,001, e, =e;=0.15 e, = 0.33,

“f 8, = 82 = 83 = 0,01, 84 = 0,174

:%g which result in

7 R, = 0.049, R, = 0,137, Ry = 0.119

’;‘ b. If it is now assumed that the above Rj values have been

-jf obtained from the measured frequencies and if {B(J)} are computed from
;E: Equation (54), then 8{1) and 8'2) can be used in the inverse problem to
i;; solve for the single crack

25 Caq = 0-475, 850 = 0.193, Rgyq = 0.004.
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If, instead, 3(2) and 3(3), which correspond to the largest two of the
three Rj values, are used, the diagnosis yields two possible solutions,
namely,

e,. = 0.372, 9_,,= 0.422,

eq eq = 0.161

Rleq
and

= 0.647, 1o,, = 0.217,

eq = 0.015

eeq Rleq

The second one of the last two solutions is more likely since Rleq= 0.015
is closer to the measured value of R;,., = 0.049. Indeed, the location
diagnosed, eeq = 0.647, is close to the location of the major crack which
is at the distance of 0.631 from the built-in end.

Other examples can be given wherein a certain pair of s(j) values
yields better diagnosis. However, it is not clear at this point which
pair to choose in each case.

It should be noted that the sensitivity number g is a measure of how
sensitive the natural frequencies are to given crack depth and location

as a function of the slenderness ratio. Decrease in natural frequencies
is greater for larger values of 9. Between two cracked beams with the
same crack location and relative crack depth, 8 for the more slender one
will be smaller giving rise to smaller Rj values. For example, for

y = 0.6 (and v = 0.3), 8 = 0,0697 when b/L = 0.02 and 6 = 0.0174 when
b/L = 0.005. Thus, in practice it is relatively harder to diagnose
damage in slender beams.
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4.0 General Two-Dimensional Frame Structure

This chapter expounds a generic model of a two-dimensional multi-
storied frame (Fig. 15) with n stories and m spans (thus m + 1 anchors).
A formalized scheme is developed for obtaining the modal frequencies of
such a structure with or without cracks. In the T-circuit analogy, the
characteristic equation for the structure is developed through the mesh
current (moment) equations. Hence, the unknowns are the moments at the
frame joints and at the cracks. There are (p - 1) unknown moments at a
frame node where p beams join together. Because the moment is continuous
across a crack, there is one unknown moment for each crack. It follows
that the order of the resulting linear system, which is equal to the
number of unknowns, is [n(3m + 1) + k] for a frame with k cracks. "On the
other hand, in the M-circuit analogy, node voltage (slope) equations lead
to the characteristic equation. Slope is continuous at a frame joint;
therefore, there is one unknown slope for each frame joint regardless of
the number of beams connected there. However, there are two unknown
slopes at each crack location, one on each side of the crack. In other
words, slope is discontinuous across a crack. The structure is assumed
rigidly fixed at the ground level; hence, the slopes are zero at the
anchors. The order of the system is thus [n(m + 1) + 2k] with » cir-
cuits., The m=-circuit analogy is therefore preferred over the T-circuit
analogy, since the order of the system for k < Zmﬁ is smaller in the
former,

The procedure to obtain the characteristic equation of the frame
structure can be outlined as follows:

l. It circuits simulating individual columns and girders joining at
right angles are interconnected such that the boundary conditions (Ref.
1, p. 40) at the analog-frame joints are observed. (It will be shown
that a network diagram need not actually be drawn.)

2. For each crack present on any element, one more T circuit
(hence, two more unknown slopes-voltages) and one crack resistance (Sec-
tion 2.3) are added to the network. A girder or a column with p cracks
is thus simulated with (p + 1) 1 circuits connected in cascade via the
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crack resistances. The first and the (p + 1)th circuits are then con-
nected with the rest of the network according to Step 1.

3. Kirchhoff's current law is written in terms of the node voltages
which correspond to the angles of rotation at the frame joints and at the
cracks.

4, Under free vibration, the coefficient matrix obtained in Step 3
must be singular. If the damage parameters (i.e., location and severity)
for each crack are known, the characteristic values of the structure,
{s}, can be determined from the zero determinant of the coefficient
matrix (the forward problem). If the characteristic values are known and
a diagnosis of the damage is required (the inverse problem), the method
in Secton 3.2 is used to find a solution for a single crack, similar to
the examples in the previous chapter.

The approach taken here results in a formal scheme which can be
applied to frame structures without referring to an actual network dia-
gram. Reference will be made to Figure 5. The word "wall" will denote
the union of all the columns on the same vertical line. Each node and
each beam element is identified by a number. Numbers corresponding to
the nodes are encircled in the figure. The numbering order for the beam
elements begins at the left lowest column, proceeds up through the
columns on the first wall, returns back to the second anchor, proceeds up
vertically, and continues in that order. Once the columns are finished,
girders on each floor are numbered progressively from left to right
starting with the first floor and continuing on with the upper floors.
Quantities related to a beam element such as G, P, Q, etc., are sub-
scripted by the number of the element. Each node is numbered by the
column under the node. If there are 2 cracks on a column (girder), the
original number of the beam element refers to the uppermost (rightmost)
segment of the column (girder) which is now represented by ¢ + 1 beam
segments. The other segments are numbered following the largest number
in the scheme. Due to discontinuity of slope at a crack, two new nodes
are created on the two sides of each crack.
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4.1 Analog Circuit Equations and Boundary Conditions

Nodal Equations:

Figure l16a shows a typical node r at the intersection of column
elements r, s and girder elements p, q. In reference to Figures 5 and
16a, the sum of the branch currents entering the node r are set equal to
zero. Namely,

(vi = ypd6pg + (¥5 = ¥p)Ggq + (yy = ¥p)Gpg * vy = 965, (56)

- y,.(Gp + Gq + 6. ¥ Gs) + Ip2 - Iql *1,-1,=0

where (y% - y;) is the analog voltage difference between the nodes i and

r and Gpo s the conductance which connects these two nodes. The
current sources appearing in Equation 56 are dependent on the transverse
deflections of the two ends of the beam elements to which they corre-
spond. Under small deformation theory, vertical deflection of the nodes
shown in Figure 15 is, by second order approximation, equal to zero.
Thus, in Figure léa yp2 = yq1 =0, ypz and yq1 denoting the deflections
of the right end of the pth girder and left end of the qth girder,
respectively. If, in addition, the nodes i and j do not bound cracks,

then y 0. Consequently, I . =1 _=1_=1_=0 from

pl p2 ql Q2
for instance, is not zero since,

pl = yq2 =

Equation (23). On the other hand, I.,,

in general, Ypp #0and y., =y, #0 (i.e., side sway is allowed).

Upon substitution of Equation (22) into (56),
YripiQp * nqulg + P Qp *+ Q) = yinp Wy = Yingig = Ve e

» L i 1) =
yznslws + (m) (Ip2 Iql + II"Z ISI) 0 (57)
0

P

chosen for the frame.

where n_, = (EIle)p///QEIB/L)o and (EIg/Lg) is the characteristic value
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In the formulation of crack nodes, Figure 16b shows two nodes, r and
r', across a crack on a beam element. Kirchhoff's current law is written
for the node r:

LI | o' - ' - - [ =

(¥q = YplBpg * yp = yp) (o) = 9 G + 1, = 0 (58)
where y; is the rotation of the node r' and the conductance -x repre-
sents the crack. The nodal equation for the node r' is of a similar
form. Equation (58) is valid whether the crack is on a girder or a

column. Following the same steps which led to Equation (57) we may
obtain

-y! _1 _‘ll - u! L =
Ye(0e1Q = 55) = Ye(5g) = Yohri¥e * (ETE)OIrz 0 (59)

Assemblage of the Nodal Equations:

From the small deformation theory, points on girders on the same
floor level will have the same horizontal displacement. Namely,

i =1,oco’n 9 j=1’2
(60)
Also, Yi2 © yi+1,1’ i=1,...,n~1l., On the other hand, deflection conti-

Yij = Yn+i,j = Yonti,j = o0 = Ymn+i,

nuity across a crack implies that deflections of the nodes r and r' in
Figure 16b are equal. Thus, there are (n + k) unknown deflections
associated with the frame, k denoting the total number of cracks on the
frame. Designating by yi(y1 2 Yo i=1,...,n) the horizontal displace-
ment of the ith floor, we obtain an (n + k) vector of displacements and
an [n(m + 1) + 2k] -vector of rotations as
T
Y= {1 Y2 oo Yy Ypiome)er ott Ya(2me1)+k!

[ [} ' v' T
£ 2 e Ynmen) Yn(amen)+n Ynzmel)+l o Ya(eme1) k!

(61)

where y
and y

designates the transverse deflection at the ith crack,

[}
n(2m+l)+i designate the rotations immediately to the

n(2m+1)+i
and y

n(2m+1)+i

v rw e e
U LY

2 S
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left of (below) and to the right of (above) the ith crack which is on a
girder (column). The unknown deflections can be related to the rotations

via the kinetic equations, defining the sideway motion of the floors, and
the shear continuity conditions at the cracks. Cross shears at the
column ends are the axial driving forces for the floors [1, p. 42]. The
axial acceleration of a floor, which is composed of all the girders on
the same level, is the same as the transverse acceleration of the column
ends at the nodes where the columns join the floor. Thus for the ith
floor (Figure (17)

m p+m-1 q+k.=1
Z = :E: 2

+ +i+l, ] = p.l. * psl: twy,; (62)
J=0[ jn+i,2 * Jn i+l,l = 33 3 e I R

where p = (m + 1)n + (i - 1)m + 1 in accordance with the numbering order
described earlier and ki is the total number of cracks on the ith

floor. There is one such equation for each floor. The term in the
braces on the right-hand side of Equation (62) is the total mass of the
ith floor. Equation (62), upon substitution of the last two of Equations
(19) for shears, will relate deflections to rotations. Figure 18b shows
the diagram of a frame withm =1, n =2, k = 2, There are eight nodes,
eight beam elements (hence eight interconnected T circuits) and four
unknown deflections. The first floor has one crack on it. The kinetic
equation for the first floor with pg = pg, has the form

Vig + Vag = Vpy = V9y = w2¥1os(Ls + Lg) (63)
where, for instance,
1 [ ]
v = - P L 64
32 53(03¥3 3¥183/L3) (64)

Y7y = t—,io;yé + lzy7 + (Payy = P7y7)89/Ls]

from Equation (19) with y3; = y31 = 0, Y1 = ¥32 = Y71,

y; = y}z = y;l, Y72 = ¥7, y;z = y;. Substituting shear expressions,
Equations (64), and the similar equations for V,, and V,,, into Equation
(63) and rearranging, we obtain
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(%)0{[“13P1 + ny3Py + n33P3 + NyaPy + ng3lss + 8g)ly;
[} [] (] (] [ (] []
= na3Pay, - "73P7Y7} = (ny120Q; = n22Q2)y; = naaWay;
[} (] ‘. ] ]
+ (n32Q3 = ny2Q7)y3 = nyokays (65)

where
g * (ED;(8/L) LED olB0/Lo) ] (66)

The kinetic equation for the second floor can be developed similarly.
Application of shear continuity at a crack will now be demonstrated for
the crack on the first floor (Fig. 18b). Hence Vg, = Vg,, or from the
last two of Equations (19)

1 ] ' [} v - 1 (Y] [}
-ﬁs(weh + Qgyg PsygBa/Lg) FS(QSYa + Wgy3 + PsygBs/Ls)  (67)

since yg; = ¥s2 = 0. - The following expression is obtained by rearranging
Equation (67) and noting that hg = hg and gg/Ls = gg/lg:

(_%:)‘Ps + Pglyg = Wgy) = Wsys + Qgyg - Qg¥g (68)

For the general frame structure, there are n kinetic equations of
the form of Equation (65) and k shear-continuiity equations of the form
of Equation (68). These (n+k) equations can be arranged in a matrix form
to solve for the deflections in terms of the rotations, namely,

y = (L) 7" y' . (69)
- Blg ~ -~ -

On the other hand, the nodal equations (57) and (59) can be arranged in
the form

L - -
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where I is the vector of current sources and is related to the deflec-
tions via Equations (23); that is,

2
El
1= Hoy . (71)
! (—5‘L )o 2y

After Equation (69) is substituted into Equation (71), then Equation (71)
into Equation (70), and it is noted that !1!2 = XT, the slope equation
results:

(xTz7x - wy' =0 . (72)

This is the general form of the result for any planar frame with any
number of cracks on it. The coefficient matrix in (72) is symmetric.
The individual matrices, in general, have the forms

n{m+l) 2k 2k
(1) (m+1)
S IR P I AR IR
E = Ecl [+ - I.E.c,m+1 | ﬁc ! 9 kc (73)
Eg} .. lEg,m+1 | 9 l ﬂg kg
n(m+l) ch 2k n kc k
Yo | A 1 4 2o S 1 9
U= ATcl B, : 0 Z = cc-l_o : 0 (74)
—T = — — —] =
A o I8 0 0 D
_ -9 - ~g -_ | - | 0 -9
with y and y' arranged as in Equation 561)
R TR AR LU S P T A A0 L )
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where the subscripts ¢ and g refer to cracks on the columns and on the
girders, respectively, with k and kg being the total number of cracks on
the columns and on the girders (k = ke + kg) It should be noted that
~(i) !o» and Zo for the case of no crack are modified when cracks are
introduced on the frame. The matrices U and Z are symmetric. A formal
procedure will now be described to esta51ish Ehe above matrices without
the need to draw the actual analog circuit.

4.2 Procedure to Establish the Matrices
In the following, for simplicity of explanation, properties of the
beam elements are assumed uniform throughout the frame,-that is, n1j =1

for all i,j, except for the lengths. At the end, corrections for the
general case are mentioned. '

1. To establish the g matrix:

U is composed of the coefficients of the rotations yi' in equa-
tions such as (57) and (59). The ith row in the matrix stems from
Kirchhoff's current law written for the ith node, the first n(m+l) rows
being for the nodes on the frame joints and the next 2k rows for the
nodes at the cracks. Hence,

a. the diagonal entry uj; will be the sum of the Q values,
Equation (20), of the beam elements adjoining at the node for which
Kirchhoff's current law is being written. If this node is at a crack,
then ujj is given by the Q value of the element ending at this node
minus the M value for the corresponding crack, where M = 1/g8. Diagonal

entries of B and Bg will thus be of the form (Qt - Mr)' And,

b. the off-diagonal entry Uy 5 will be W, , Equation (20), if the
nodes corresponding to the columns i and j of the matrix are linked
directly by the kth beam element. If these two nodes are linked by a
crack, i.e., they are the nodes on the two sides of a crack, then “ij
is given by the M value of the crack. Otherwise uij = 0. Due to
symmetry, uij = "ji' The ith row of go in Equation (74) is unchanged
relative to Uy of the no-crack (k=0) case if the ith node is not adjacent
to a cracked element.
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2. To establish the Z matrix:
The matrices Z and X stem from the kinetic equations and shear condi-
tions. The first n rows in them represent the kinetic equations govern-
ing side sway of the n floors. The last k rows correspond to shear
continuity conditions at the cracks. Z consists of the coefficients of
deflections y; and its entries can be aenerated as follows:

a. The diagonal entry zjj for i=1,2,...n will be the sum of
the gk values of all the girder elemenzs on the ith floor plus the sum
of the P values, Equation (20), of all the columns adjoining at the ith
floor. If a column adjacent to the ith floor is cracked, then only the P
value of the column segment nearest to that floor will be included. 8
can be expressed in terms of the characteristic value gq as Bk = ekBo-
If the frame is homogeneous in properties, then e, = Lk/Lo- Diagonal
entries Zi4 for the last k rows (i.e., diagonal entries of the Q matri-
ces) will be the sums of the P values of the two beam segments on the two

sides of the corresponding crack.

b. The off-diagonal entry Zi i+l of Z, will be the negative of

the sum of the P' values, Equation (20}, of all uncracked columns joining
ith and (i+l)th floors. zi,i+1 = 0 if all the columns between those
floors are cracked. 235 = 0 for n > j > i+2 and Zi5 = 234 Zy is,
hence, a tridiagonal symmetric matrix. If any one of the columns adja-
cent to the ith floor is cracked, then 25 forl<i<n, n<j<n+k,
(i.e., entries of Ec), will be zero except for that (those) j value(s)
which correspond(s) to the deflection(s) at the crack(s) nearest to the
ith floor, in which case zjj is equal to the negative of the P' value
for the column segment which links the ith floor to that crack. If none
of the columns adjacent to ith floor is cracked, then ith row of Ec is
zero and the ith row of Zy is unchanged relative to Zg of the no-crack

(k=0) case.

LI ~ =

zi,i+1 forn <i <+ kc (entries of gc) will be zero if there is no

other crack between the (i-n)th column crack and the floor level above

MR N AR Al R’ a’aa"wTe’ald
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this crack. Otherwise, Z; 541 will be equal to the negative of the P'
»

value for the column segment which links the (i-n)th and the (i-n+l)st

cracks.

2§ §+1 for ntk, < i <n+ kg (entries of Qg) will be zero if there
is no other crack between (i-n-k¢)th girder crack and the wall to the
right of this crack. Otherwise zj i{+] will be equal to the negative
of the P' value for the girder segment which links the (i-n-k¢)th crack

and the crack on its right.

Hence, Dc and Dg are diagonal if at most one crack exists on each
beam element. If more than one crack exists on any column or girder,

then Dc and/or Dg are accordingly tridiagonal symmetric matrices.

3. To establish the X matrix:

§ consists of the coe;ficients of rotations yi' in equations such as
(65) and (68). A square submatrix X(K) in Equation (73) corresponds to
rotations of the frame joints on the kth wall (Fig. 15).

a. The diagonal entry x(k), which stems from the kinetic equa-
tion for the ith floor, will be given by the Q' value, Equation (20), of
the column (column segment) under the frame-joint node n(k-1)+i minus the
Q value of the column (column segment) above the same node. If there is

(k)_ -0t
no cracked column on ?2? kth wall, then Xyi' = Qn(k-1)+i Qn(k-1)+i+1
for i=1,...,n-1 and - Q nk

b. The off-diagonal entry x§k3+1 = -w;(k_1)+i+1 (that is, the

negative of the W' value, Equation (20), for the column above node
n(k-1)+i) for i=1,...n-1 if the column of the kth wall between the ith
and (i+l)th floors (i.e., the column above node n(k-1)+i) has no crack on
it. Otherwise x$k3+1 = 0, and that entry on the ith row of Ec which
corresponds to the rotation of the crack node nearest to and above the
node n(k-1)+i will be equal to the negative of the W' value of the column
segment linking the node n(k-1)+i and the said crack node. xgg) = 0 for

j > i+2 and x(k) = - x(k) for i #+ j. (Entries of each §(k)

id Ji
independently of the other submatrices.) X(k) is thus diagonal if each

column of the kth wall has at least one cr;ck. Otherwise it is

are numbered
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tridiagonal. X(k) is unchanged relative to X of the no~crack (k=0)

case if there ;s no crack on the kth wall,

If the column below node n({k-1)+i is cracked, then that entry on the
ith row of Ec which corresponds to the rotation of the crack node nearest
to and below the node n(k-1)+i will be equal to the W' value of the
column segment linking the two nodes. Except for this and the above
mentioned cases, entries of Ec are zero.

¢c. The E matrices in Equation (73) couple the crack nodes with the
frame-joint nodes. Rows n+l through n+k of X (i.e., E and H matrices)
are filled in as follows: The entry on the &atrix co{umn wﬂich corre-
sponds to rotation of the node on the left (or lower) side of the crack,
at which the shear continuity condition is being written, is equal to the
Q' value of the girder (or column) segment which links this node to the
one on its left (or below it). The entry corresponding to the node on
the right (or upper) side of the crack is equal to minus the Q' value of
the segment linking this node to the node on its right (or above it).
These two entries are within the submatrix ﬂg (or !c). The entry, corre-~
sponding to the node on the left of (or below) the left (or lower)
crack-node, is equal to the W' value of the segment linking these two
nodes. Finally, the entry corresponding to the node on the right of (or
above) the right-side {or upper) crack-node is equal to the negative of
the W' value of the segment linking the two nodes. These two entries can
be within the submatrices E or H depending on whether there are one or
more cracks on a girder (cgiumn;. E = 0 if there is no crack on the

=C,k -
kth wall; E K= 0 if there is no crack on any of the girders adjacent to

t: -
the kth wall.

4, Corrections for the general case:

If beam properties are not uniform throughout the frame (each column
or girder still has uniform properties within itself), then the following

corrections are necessary:

a. Multiply each term in the U matrix, except the terms of the

form llsez. by the corresponding n; value, that fis, Qp and K, by n

P pr*
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b. Multiply each term in the first n rows of the X matrix by I}. .

the corresponding n, value, that is, Qp' and N'p by Noae %S

c. Multiply each term in the first n rows of the Z matrix by

. . ] - :‘S-'.

the corresponding ny value, that is, Pp and Pp by “pa and By by Npge .::3..

el

, d. Multiply the ith row of Z, n+l < i < n+k, by (Bz/Lz)/(Bo/Lo) o
where ¢ is the number of the element on which the crack for which the ith -
row represents the shear continuity condition is located. &k}
oy

The above procedure will now be illustrated with an example. E:;_
' Example 1. The illustrated frame is depicted in Figure 18.
1 a. Frame without cracks (Fig. 18a) with different beam properties. N
! [} ) ] ] ' 1 ;Z:i:'
Y1 Y2 Y3 Yu ;::h

- o
L

n11Q1+021Q24n51Qs UPSLY] UEILE 0 57

o

LPIL) n21Q2*n6)06 0 Ng1Hg o

. ) {;::.
Ns1Ws 0 N33+, 1Qutns)1Qs Ny, . }

0 AL Ry 1 Wy Ny1Qu+ngy Qg | X

| (76) -
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where, for convenience, the rotations and the deflections at the nodes
are written above the corresponding columns of the matrices. The

det (XTZ'lx-U) then yields the modal frequencies of the frame without
crack.

b. Frame with two cracks (Fig. 18b). The frame is now assumed
uniform. Hence, nijal and ez=sz/3°=L£/Lo.

N1 ¥2 J3 Yy A\ Y7 Yg Ys
r01+Qz+08 Wy 0 o ' o 0 W 0

Wy Q40 0 Ng : 0 0 0

0 0 05, O | Wy 0 0 Ws

0 W 0 Q! 0 N, O 0

Ua o — - o m . A _

- |

0 0 Ny 0 QM M, O 0

0 0 0 Wy | My Q,-M, O 0

W 0 0 o | o 0 Qg-Ms Mg

L o 0 N 0 : 0 0 Mg  Qg-Ms
(79)

It may be noted that the first four elements in the second row of U are
the same as those in the second row in Equation (76) (except for tﬂe
factors np1 . This row is unchanged since node 2 is not linked to any
crack node. If the beams had different properties, then each term in U
would be multiplied by the corresponding n, value except the terms i
W, = 1/se,. In the M, terms, the sensitivity numbers, 8 ,, are sub=

scripted by the orig1na1 number of the column or girder on which the

corresponding cracks are located. Hence, 9,, for instance, refers to the

crack located on the column numbered 4 in the uncracked frame (Fig. 18).

It is also noted that Q,, W4, Py, etc. for the cracked frame have differ-

ent values from the ones in the no-crack case. Tthe Z and X matrices of
the cracked frame are subsequently conjugated as:
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Y1 Y2 Y7 Ys

B |
P1#Po+P3+Py+85+8g - P | Py 0 e
P2 PotPutes | Py 0 2
Z= I (80) o
‘ . | !
0 0 | 0 Ps+Pg £
.
[} ? [] 1 ] - [} - |
Y1 Y2 Y3 Yy Y7 Y7 Ys Ys
- l | | =
] ] ]
01 ‘Qz 'Nz Q3 ‘Q7 0 | -N-, 0 ' 0 0
wz' Qz' 0 Q“'I 0 wal 0 0
X = _______: _____ |— — — |— — (81)
0 o | W, W, o -ql0 o0
- - = == = =" =
| W 0 | -Wg o 0 0 log -Qg

where X(l) in Equation (78) and Equation (81) are basically the same
since there is no crack on the first wall. The terms -W,' and W,' in
X(Z) in Equation (78) are replaced by zeros in Equation (81), since nodes
5 and 4 are no longer linked directly. As the column under the node 4 is
cracked, the node 4 is now linked to the node 7' by the column segment

4, Therefore, W, appears on the second row and second column (which
corresponds to y,) of Fc' The third row of X reflects the continuity of

shear at the column crack in Figure 18b. Th; lower crack-node 7 is
linked to the node 3 by the column segment 7 and the upper crack-node 7'
is linked to the node 4 by the segment 4. Q' and W' values are accord-
ingly placed on the third row. The construction of the matrices for the
cracked frame is now complete.

Figure 19 illustrates the relative changes in the first three natu-
ral frequencies of a two-story single-span frame with a single crack of
@ = .174, The frame has uniform properties (i.e., "ij =] for all i,J)
and all six of the beam elements are of equal length, (i.e., gj are the
same for all the six elements). Due to symmetry, a crack on element 3 or
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4 will yield the same R curves as a similar crack on element 1 or 2,
respectively (Fig. 18a). The first three characteristic values for such
a frame with no crack are 3(1) = 1,2240, 8(2)= 2.2177, 3(3) = 3,2885.
Similar to the guidelines established previously for damage diagnosis on
a cantilever beam, the following conclusions can be deduced from Figure
19 for the specific frame involved. (Due to symmetry, only the left half
of the frame need be considered).

a. In cases when R, is relatively large and R, and R; have near-
zero values, the (major) crack is either on the column element 1 at a
distance of 0.35-0.40 from the ground or on the girdér element 5 at a
dis*ance of 0.0~0.15 from the corner, or there are two major cracks, one
each at the given locations. |

b. In cases when R, is relatively large and R; and R, are near
zero, the crack is on the column element 2 at 0.15-0.20 distance from
the lower joint,

c. For the case when R; is relatively large and R; and Ry are
small, the crack is on element 2 at e, = 0.45-0.60, or near the mid-point
of either of the girders, or there may be a major crack at each of these
locations.

d. When R, is very small and both R, and R; are relatively large
and have comparable values (say, different by no more than 0.01 at the
range of values in Figure 19), the crack(s) is (are) on element 1 at
e, = 0.55-0.65 and/or an element 2 at e, = 0.25-0.40.

e. In the case when R, is very small and R; and R; are both large
and comparable in value, the crack(s) may be on element 1 at e, = 0.40-
0.50 and/or on element § at e, = 0.25-0.35. However, there are other
possibilities, an example of which is the presence of three major cracks,
one each on element 1 at e; = 0.4-0.5, on element 2 at e, = 0,5-0.6, and
on element 5 at e, = 0.0-0.20.
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f. If all Rj are comparable in value, many possibilities exist.
The above guidelines (for equal-legged frame) are reasonable estimates.
They illustrate the use of relative Rj values when a numerical solution
cannot be found for a single crack. They also serve the direction of
probabilistic measure to be developed later.

Example 2.
The first three characteristic values gy for an undamaged two-

story single-span uniform frame of equal-length elements are 1.2240,
2.2177, and 3.2885. The following relative frequency changes have been
computed from the measured frequencies of a damaged frame of such charac-
teristics: Ry= 0.011, R, = 0.025, R; = 0.005. The damage will be
estimated based on these relative changes. |

The characteristic values for the damaged frame are computed from
Equation (54). The first two of these values are used in the inverse
problem with k=1 (section 3.2); that is, a solution for a single (major)
crack is sought., Four possible damage pairs are thus computed; namely,

(0.811, 0.278)
(0.094, 0.191)

(e‘]) 81)
(37, 95)

and due to symmetry

(e;, 03) = (0.811, 0.278)
(e7, 8g) = (0.906, 0.191)

where e; = L,/L indicates relative crack location measured ™ om the lower
end of each column or the left-hand end of each girder. The subscripts
"eq" for equivalent which were used in Chapter 3 have been dropped here,
The subscript on 8 indicates the structure element on which the crack is
located. The major crack is thus either on one of the first story
columns (i.e., on column 1 or 3) or on the second floor girder (i.e.,
beam number 6) (Fig. 18a). To decide where the actual crack is located,
(e7, 81) and (e7, 8g) are each used separately in the forward problem to
compute the relative reduction in the third natural frequency which would
be caused by each crack alone. The computed values are 0,017 and 0.002,
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respectively. The second value is closer to the actual measured R3 value
of 0.005. Thus, it may be concluded that the crack is on the second
floor girder, i.e., on element 6. The fact that the actual R3 value is
greater than the computed value may be due to a minor crack on the frame,
for example, near the middle of girder 5 or 6 (Fig. 19). It must be
stressed, however, that one major crack is assumed to exist in the above
computations. The same Rj values may be produced by a combination of
minor cracks or, for instance, by two major cracks, one on column 1 at
0.40-0.50, the other on girder 6 at 0.05-0.10 (Fig. 19). In the latter
case, the crack on column 1 would, by itself, produce almost no change in
the second natural frequency while rendering small changes (<0.003) in
the fundamental and third frequencies. The crack on girder 6 would, on
the other hand, produce negligible change in the third frequency while
causing changes greater than 1% in the other two frequencies. The
effects of cracks are, by no means, linearly additive. Qualitatively,
however, a certain crack contributes most to the decrease of that fre-
quency which would experience the largest decrease if that particular
crack were the only one present on the structure., This trend was illus-
trated by Example 5 on a cantilever beam in the previous chapter. The
uncertainty of damage diagnosis emerges from the measurability of only a
few frequencies of a structure,

Damage diagnosis can be highly sensitive to Rj values at certain
locations of the Rj curves. If, for example, R, is measured to be
0.010 instead of 0.011 in this example, then the possible damage pairs
will be

(e7, 1) = (0.795, 0.299) ; R3eq = 0.018
(e7, 86) = (0.295, 0.963) ; Ryeq = 0.094

together with their symmetrical counterparts.

There is a considerable change in the second pair while the first is
affected only slightly. In this case, the first pair would be selected
as the likely diagnosis since R3e is closer to the measured value of

0.005.

q
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5. CONCLUSION
In a previous report, damage diagnosis in simple structures was

studied [1]. In this report, analogy between beams and simple electrical
circuits has been utilized to extend the modal method of diagnosis to
multiple cracks and more complex frame structures. Computation of modal
frequencies of an n-story m-span frame with k cracks (the forward prob-
lem) requires inverting a matrix (or, equivalently, solving a linear
system) of order (n+k) and finding zeros of a deteminant of order

[n(m+l) + 2k]. In finite element methods, using generally 20 elements
per basic beam segment, there are slightly less than 20n(2m+l) nodes each
with two degrees of freedom. The size of computation savings with analog
circuits is almost 40-fold. However, using circuit analogy in determin-
ing the location and intensity of a crack (the inverse problem of diagno-
ses with k=1) may involve n(2m+l) computations of zeros of a determinant
of order [n(m+l) + 2] while inverting a matrix of order (n+l) each time,
since the crack can be on any one of the n(2m+l) elements of the frame.
On the other hand, modal frequencies of a cantilever beam with k cracks
can be computed with analog T circuits by inyerting a matrix and finding
zeros of a determinant, both of the order (k+l).

It is shown, in the report, that closely spaced multiple cracks can
be effectively represented by a single crack for which the sensitivity
number 8 is approximately equal to the sum of the individual sensitivity

7 -,

numbers. Uncertainty exists, however, in diagnosing such a damage as to \
whether there is only one major crack or several closely spaced minor i
cracks. Nevertheless, location of the damage can be identified quite fﬁ
accurately. -
oy

In the case of a structure with several cracks, only one of which is ﬁﬁ
severe, it is possible to diagnose the major crack. The contributions of Eﬁ
minor cracks to frequency decreases is small compared to that of the éﬁ
severe crack. The relative frequency changes, Rj» in such a situation, -
exhibit a trend similar to that which would be observed were the major b
crack the only crack present on the structure. If there is more than one ‘:

LI

major crack, not closely spaced, on the structure, it is, in general, not
possible to diagnose deterministically the damage with only three Rj
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values known, although the minimum number of cracks may be estimated.
Currently, the effect of damping is being investigated as a means to o
render diagnosis of such damage. Curves of relative frequency changes,

RENES
A LA

v.s

Rj versus crack location yield valuable information regarding damage
diagnosis. It may be psssible to estimate damage location, provided
there is only one major crack, by only looking at the relative magnitudes
of frequency decreases and using the relative-change curves. The process
may be tedious for more complex structures. Nevertheless, such curves
can be of qualitative help to the numerical results. However, when
cross-over occurs in the modal frquencies, Rj curves cannot be used
unless the correspondence between the pre-and post-damage frequencies is
known., The approach described in Section 3.2 eliminates the effect of
the cross-over problem on diagnosis of a major crack by eliminating the
need to know this correspondence.

In diagnosing damage in a structure, given three post-damage charac-
teristic values, g, the solution is sought for a single crack since there
are not enough equations to solve for a larger number of cracks. It is
shown that the same g8 values can be produced by one crack or a combina-
tion of several cracks. Consideration must then be given to whether it
is more likely, during a strong motion event, to produce a few major
cracks or several minor cracks. In solving for a single crack, (i.e.,
for eeq and 8qq) two measured g values are actually used first. The
third measured g value is then compared with the computed counterpart,
which would be produced by the crack with the characteristic pair
(eeq.eeq). It is shown that the two g values may not match closely
even though the diagnosis is accurate (that is, eeq and eeq identify the
major crack correctly), the discrepancy possibly being due to the pre-
sence of other minor cracks. If the discrepancy is large, then the solu-
tion is rejected with the conclusion that there is more than one major
crack. On the other hand, the choice of the pair of measured g8 values
to be used in computing eeq and eeq may affect the diagnosis. In some
cases, choosing the two characteristic values which correspond to the
largest two Rj values leads to the correct diagnosis. It is not clear,

however, what the right choice is in each case.
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Finally, for frame structures, the change in frequencies due to
cracks is relatively small, Furthermore, damage diagnosis can be highly
sensitive to Rj values in certain cases. Therefore, accuracy in field
measurement of the structural response is of extreme importance.
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APPENDIX
1. T-Circuit Equations:

In this part, the circuit equations which relate the {input-output
voltages (y;', y,') of a T circuit to the input-output currents My, M)
are developed. The terms input and output refer to the left and right
ports of the circuit in the figure and are used in a relative sense. In
Figure 2 in the text, the currents M; and M, were shown at the branches
of the circuit (as input and output currents) whereas in the above figure
they are shown as mesh currents. In principle, there is no difference
between the two. However, the latter is conceptually more helpful in
developing the circuit equations. ‘

The two sides of the circuit in the figure can be considered as
meshes. The sum of the voltages around each mesh is equal to zero
(Kirchhoff's voltage law). Hence,

El + (Z + ZO)M!. - ZQMZ - yl' = 0
“Ey+ (Z+ZgMy-ZoMy +y,! =0

where E and Z are the voltage source and impedance, respectively,
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These equations can be solved for the voltages; that fis,

yl' = (Z + ZO)MI - ZOM2 + El
yz' = ZoMy - (Z + Zo)Mz + Ey

which are the same as Equations (8) in the text.

2. n-Circuit Equations:

M 1 y ; G o Y2 "2 -

' §!

o

In this circuit, there are two nodes, with node voltages y, and
y2', and a reference node, y,' which is assigned a zero voltage. G and
Go are conductances and I, and I, are current sources. The sum of the
currents entering each node is zero (Kirchhoff's current law). Hence,
for nodes 1 and 2 '

My = I; = Gly;," =~ yo") = Go(yl. -y,')=0
- My + I, - Glyy' = yp') - Goly' = y') =0 .

The term Ggo(y,;' - y,'), for instance, denotes the current flowing through
the conductance G, from the node 1 to the node 2. There is a minus sign

in front of the term since, in the first equation, currents entering the

first node are taken to be positive. The equations can be solved for the
currents M; and M,; hence, with yo' = 0,

Ml = (G + Go)yl. - Goyz. + Il
Hz = Goyl. - (G + Go)yz. + Iz

which are the same as Equations (21) in the text.
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